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Abstract

The purpose of this paper is to simplify the numerical implementation of the exact elastic beam theory in order to
allow an inexpensive and large use of it. A finite element method is proposed for the computation of the beam operators
involved in this theory. These operators are required for the calculation of the one-dimensional structural beam
behavior and the three-dimensional Saint—Venant solution. The method is derived from a three-dimensional charac-
terization of the beam operators and consists in solving seven particular elasticity problems defined on a longitudinal
slice of beam. The computation is immediate when using standard three-dimensional elasticity softs that afford the
quadratic 15-node triangular prism element or the 20-node rectangular prism element. The discretization is reduced
since only one element is required in the longitudinal direction of the beam. The proposed method is applied to
homogeneous and composite beams made of isotropic materials, and to symmetric and antisymmetric laminated beams
made of transversely isotropic materials. Structural beam rigidities, elastic couplings, warpings, and three-dimensional
stresses are provided and compared to available results.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The exact beam theory is established by Ladeveze and Simmonds (1998) for straight elastic beams. It is
valid for anisotropic materials, heterogeneous and axially piecewise constant cross-sections, arbitrary
loadings, and any shape ratios. The first implementations of this theory (Ladeveze et al., 2001; Sanchez,
2001; El Fatmi and Zenzri, 2002) confirmed and illustrated its pertinence for the analysis of any elastic
beams, and particularly composite ones. The use of composite beams is now a real trend in many engi-
neering applications. This trend calls for the development of efficient tools, suitable for the analysis of
beams exhibiting three-dimensional effects, for which the classical beam theory assumptions are no more
valid. In that purpose, and besides the expensive fully three-dimensional finite element analysis, many
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refined beam theories were developed during the last decades (see, e.g., Reddy, 1989; Soldatos and Watson,
1997; Kim and White, 1997; Rand, 2001; Karama et al., 2003, and references therein). All of these theories
are built upon simplifying kinematic or static assumptions that cannot be always valid. By contrast, the
exact beam theory is free of a priori assumptions, and enables a systematic and inexpensive calculation of
non-classical composite effects such as elastic couplings, warpings, and free edge-effects due to the three-
dimensional interlaminar stresses (El Fatmi and Zenzri, 2002).

In the exact beam theory, the three-dimensional solution of an equilibrium elasticity beam problem is
viewed as the sum of a long wavelength part, called Saint—Venant solution, and a short wavelength part,
called the localized solution. The Saint—Venant solution has a fundamental role in the exact beam theory
since it constitutes the interior part of the three-dimensional exact solution and it is also needed to evaluate
local effects. The expression of the Saint—Venant solution, which is given in Section 2, involves the cross-
sectional stress resultants, displacements and rotations, and characteristic beam operators depending on the
materials and the cross-section geometry. The cross-sectional stress resultants, displacements, and rotations
are solution of a one-dimensional elastic beam problem which includes a characteristic beam compliance
operator that describes the structural behavior of the beam. The computation of all the characteristic
operators is the principal step in the implementation of the exact beam theory. The numerical method used
in Ladeveze et al. (2001) and Sanchez (2001) requires three-dimensional 44-node rectangular prism finite
elements of fourth degree. In an earlier method developed by the authors (El Fatmi and Zenzri, 2002), only
the cross-section has to be discretized and then only two-dimensional finite elements are needed. However,
the two methods are not suited to an immediate use of standard finite element elasticity softs, since in both
of them the obtained rigidity matrices are different from those of usual elasticity problems.

The aim of this paper is to simplify the computation of the beam operators in order to allow a larger use
of the exact beam theory. In that purpose and starting from the beam operators characterization, estab-
lished in El Fatmi and Zenzri (2002) and synthetized in Section 3, a three-dimensional formulation of this
characterization is derived in Section 4, leading to the determination of the beam operators by a numerical
method that can be immediately and inexpensively handled using standard finite element softs. Section 5 is
then devoted to illustrations of the exact beam theory using the proposed method to analyse homogeneous
and composite beams.

2. Saint—Venant solution and beam operators

The reference problem in the exact beam theory is a three-dimensional equilibrium beam problem. The
beam of e, axis (vectors are highlighted in boldface characters) is occupying a prismatic domain € of cross-
section S and length L. Sy, is the lateral surface and Sy and S; are the extremity cross-sections. The materials
constituting the beam are linear elastic and the elasticity tensor field is denoted K. The beam is in equi-
librium under a body force density f° 4 on Q, and surface force densities F¢, H, and H; on Si, S, and S;,
respectively. The data S, K, f¢ and F? are x-constant. The equations of the reference problem are:

dive+f4=0 in Q,
(&) =1(V'E+VE) inQ, 0
=K :¢(&) in Q,
o-n=F¢ on Sja

(2)

g - (78,6) = HO on S(),
O"ex:HL on SL,

where & is the displacement vector, ¢ is the stress tensor, and » is the unit vector that is normal and external
to Sju.- The solution of this problem is denoted by (s) = (o, &), where ¢ is unique within an arbitrary rigid
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body displacement. The Saint-Venant solution, denoted by (s*) = (¢%, &), is the unique x-polynomial

solution that exactly satisfies Eq. (1) and satisfies the boundary conditions of Eq. (2) only in terms of

resultant (force and moment) of the stresses acting on the extremity cross-sections. Thus, (s*') extends the

solution of the well-known Saint-Venant problem in which the beam is isotropic, homogeneous and

subjected to only extremity loadings.

As given by Ladeveéze and Simmonds (1998), the expression of the Saint—Venant solution is:

E =ux)+ o) ANX+A(X) T(x)+BX) Mx)+ W(X), 3)
o -e, = A (X) T(x)+ B (X) M(x) + C'(X),

where xe, + X denotes the position vector of a point in Q; X belongs to S. The operators .«Z, &, /°, #°, W

and C* depend on the materials and the geometry of the cross-section. W and C® are also linearly

dependent on the loading [, FY]. .«°, %" and C? are unique and they verify:

[o2°dS = [(XNB"dS =7, [(#°dS= [ XNAdS=0, @
[;C'dS = [ X AC'dS =0,

where .# is the identity tensor and O is the zero tensor. The cross-sectional stress resultants,
T(x) :/o-ede:/oS"-ede, M (x) :/X/\crede:/X/\as"~ede7 (5)

s s s s

verify the beam equilibrium equations:
T,x+f5fddS+fastdT:0, (6)
M,+e AT+ [(XAf'dS+ [[( X AF'dt=o,

where (-)  is the derivative with respect to x. The operators .«/, % and W are taken such as:
Jo At dS = [ A" BdS = [(B"" - /dS = [( A" - BdS = O, )
Jo (7w — /T cYds =0, [(B" -W'—3"-C)dS =0,

where ()" is the transpose operator. The conditions of Eq. (7) are always possible, since & is unique within
an arbitrary rigid body displacement, and they lead to cross-sectional displacement, u, and rotation, w,
which verify:

ux) = [ (L7 E— A" (0-e))dS = [( (LT E — AT (0% e,))dS, }

o) = [, (BT E— B (c-¢))dS = [, (B - & — B (0™ -e,))ds. (8)

The cross-sectional strains y = u, + e, A and y = o, are related to the stress resultants by the fol-
lowing one-dimensional structural behavior equation:

x M ] =" fdS + [ BT Fldn

The structural compliance operator of the beam, A, is symmetric, definite, positive, and depends on the
materials and the geometry of the cross-section. Egs. (6) and (9) and boundary conditions on S, and S;,
form the one-dimensional problem of the exact elastic beam theory. The exactitude of this theory follows
from Egs. (5) and (8) which show that the cross-sectional stress resultants, displacements and rotations
defined on the exact solution (s) coincide with those of the Saint—Venant solution (s*'); then the compliance
operator A is also exact. For a non-x-constant loading [f*(x), F*(x)], the Saint-Venant solution and the
one-dimensional problem are also defined by Egs. (3) and (9), except that the values of W9, C¢, % and 3¢
become dependent on x. For such non-x-constant loading, Ladeveze and Simmonds (1998) proved that the
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Saint—Venant solution remains an interior solution of the three-dimensional equilibrium beam problem and

they also proved that Egs. (5) and (8) are still verified.

3. Characterization of the beam operators

In a previous work the authors established that the beam operators can be determined by the minimi-
zation of seven functionals derived from the potential energies associated to seven elasticity problems (EIl
Fatmi and Zenzri, 2002). In each of these problems, the loading is taken such as the exact solution, (s),
coincide with that of Saint—Venant, (s*'). The first six problems are problems of traction, torque, bendings
and shear forces. They allow the determination of .o, %, .<7°, #° and A. For a given loading [f°, F%], a
seventh problem is devoted to the determination of W and C®. The main results of El Fatmi and Zenzri

(2002) are synthesized in the following proposition.

Notations

o =[U U, U, #=[U"0°UY < =|[C' C*C % =[C'C, C,

fle.+ fre, + fle. = [ f1dS + [ Fldr,
fleo+ foe,+ foe. = [(X NfIdS + [, X A Fdr,

Al Mx + Axz — Agxy + V7
A z * * "
r= zi . VI =V(z2), EQLV)=| kX’ =izt ,
ii — X+ Iy + V
6

D) =3(ex@ V' + V' @er), o == [ V'dS, B =— [ VS,

where (e,, e,, e.) is an orthonormal base and ® is the tensorial product operator.

Proposition. The minimisation of the functionals:

FEW V) =5 [oE) K oE)ds - L@ k=164,

s
where the linear form &* are:
=Lk, k=1,4,56,
=L, [e(z*) . K : D(U° — fle, — fle.) — C°. V*}ds,
L= L [, [o(&) 1 K : D(U° = Be, — fle.) = € ¥*ds,

z° =L [ [F(E*) K Zlef[D(Ui) + (fd o Z?:1fici> . V*]dS+Lfast' Vidr,

leads to the beam operators as follows:

o Fork=1,4,56and Ek(/lk7 V*) minimising J*, we have:
C'=K:¢) e, U =V'4+p+anrX,
Ay =05 (i=1,4,56), Ay =0t Ay =—a.

z

(14)
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o For E(3*, V?) minimising J*, we have:

C* =K [o(&) - DU ~ fle, ~ fle.)] -e.
U2:V2+ﬂ2+f12/\X, A22:ﬁ§+0€3, A32*,87a6

o For &(A*, V?) minimising J°, we have:

CP=K: [3(53) +D(U° - Ble, — ﬂfez)} -ey, (16)
U=V+p+1NX, /123:—[3;"‘“; A3 = —f; — o

e For é_d(lld, VYY) minimising J9, we have:

Cd =K: [‘O(Ed) - Z?:lfiD(Ui)} 2T (17)
Wi=vVi+p'+ [ /7 CUdS + (af + [(#" - C'dS) A X.

El Fatmi and Zenzri (2002) performed the minimisation of the functionals J* by using a two-dimensional
finite element method where the unknown are the scalars /; and the degrees of freedom of the fields ¥*. The
computation is economical since only the cross-section has to be discretized, but the rigidity matrix is
different from the two-dimensional elasticity matrices. Thus, the implementation of this method within
available softs needs the introduction of a new finite element model. Such work can be avoided by the use of
a three-dimensional formulation of the beam operators characterization. The three-dimensional calcula-
tions have also the advantage of being more appropriate to the study of localized effects which are com-
pletely three-dimensional.

4. Three-dimensional characterization and numerical method
Using the form of the fields & (Eq. (10)), which especially leads to x-constant strain tensors &(&" (4", V*)),

the following expressions of the functionals J* and the linear forms #*, can be easily derived from Egs. (12)
and (13):

S S : .
J"(f*):i/ge(f*) (K e(E)dQ— ZHE), k=1,...,6.d, (18)
:%( *.e.dS — fs ede)
—}( (e AX)dS [ & - (e AX)dS), 1= [;X-XdS,
95 = Sl(fs g eds - [, & eds),
( ToedS— [ & ~ede), (19)
= [,e(&) K : D(U6 Ble, — fle.)d@ L [, & - C°ds,
_ fg K D(U5 Be, — ﬁfez>dQ+L J, & - Cds,
= Joe@) K XL fDUYAQ+ L [ & - (1= £, f1C)dS + L [ & - Fidr.

To obtain Eq. (19), the axis of the beam is supposed to go through the geometric centers of the cross-
sections so that: [(ydS = [(zdS =0.

In the expressions of the linear forms .#* (Eq. (19)), the variables 4* and ¥* do not appear explicitly; the
only variable is now the displacement field &. Thus, the problem of determining a field & minimising a
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functional J*, appears as a displacement formulation of an equilibrium problem in which the elastic beam
occupying the three-dimensional domain Q is submitted to a loading defined by the linear form #*. Then,
the three-dimensional finite element method is obviously appropriated to the numerical computation of the
fields &. Since these & fields are quadratic relatively to the x coordinate (Eq. (10)), the quadratic 15-node
triangular prism element and the 20-node rectangular prism element are, among the common finite ele-
ments, the most suitable to the & computation. And it is clear that in the x direction only one element has
to be used, whereas the cross-section should be discretized as necessary.

To ensure the conformity of this finite element method with the vectorial space of the fields &, relations
must be imposed between the degrees of freedom of each element. There are 23 relations for the 15-node
element and 32 relations for the 20-node element. These relations, given in Appendix A for the reference
finite elements, are easily obtained by setting the coefficients of the x-monomials in the finite element basis
functions in accordance with those of Eq. (10). These coefficients also must be constant within all the
elements; however, the continuity of the base functions of the finite element space and the 23 or 32 imposed
relations make this condition automatically satisfied.

The chararacteristic beam operators are derived from the solutions & as given in Eqgs. (14)—(17), in which
the vectors V* are just the vectors Ef‘so. In Eq. (14), the components of the compliance operator may also be
obtained by:

Aik:%/s(fi):K:s(E")dQ Vi=1,...,6 and Vk=1,4,56. (20)
Q

As shown in Eq. (18), the seven problems are solved using the same rigidity matrix. However, the
minimisations of J',J* J° and J° must be done before those of J2 and J3; and, for a given loading [f¢, F9],
the minimisation of J¢ must be preceded by the resolution of the six other problems.

5. Applications

The numerical method presented in the previous section is implemented within the finite element soft
Castem2000 (Le Fichoux, 1998). For given cross-sectional geometry and materials, the operators
A, B, o/, % and A are computed. From these operators, three-dimensional stresses and displacements,
(o™, &), can be derived for any cross-section subjected to internal forces (T, M).

5.1. Homogeneous isotropic beams

The first applications are devoted to the analysis of the structural behavior of homogeneous cross-
sections made of isotropic materials. For such cross-sections, the compliance operator A can be derived
from the solution of the classical Saint—Venant problem. Relatively to the (G, y,z) system of coordinates,
where G is the geometric center of the cross-section and (y, z) are its principal axes, the components of A are
classically expressed as follows:

= 0 0 0 0 0
0 Htihs Az Ay 00
=0 A Gtes Aw 0 0 (21)
0 /124 /134 % 0 0
1
0 0 0 0 g 0
0 0 0 0 0 %]
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where E is the Young’s modulus; G = E/2(1 + v), the shear modulus; v, the Poisson’s coefficient; (/,, L), the
principal inertias of the cross-section; (k,, k.), the shear coefficients; ()¢, z.), the coordinates of the shear center
C and J is the torsional constant. For an y—z-symmetrical cross-section, C and G coincide and the matrix [A]
is diagonal. For a non-symmetrical cross-section the following approximations are commonly used:
L M= A=
Except for particular cross-sections, such as the circular ones where analytical expressions are available, the
computation of J and (k,, k) is generally handled using a two-dimensional finite element method or one of
the numerous simplified methods (see, e.g, Batoz and Dhatt, 1990).

Table 1 provides, for five cross-sections denoted S1, S2, S3, $4 and S5, a comparison between the
numerical results obtained by the current method and those available in the literature. This comparison

Ay = — (22)

Table 1
Torsional contant (J), shear coefficients (k,, k.) and position (z.) of the shear center for homogeneous isotropic cross-sections (com-
parison between current and available results)

Cross-sections Present results Available results
s1 J/R* 1.56 1.57
v 0 0.3 0.45 0 0.3 0.45
k 0.853 0.846 0.841 0.857 0.850 0.846
2 J/b* 3.124x10* 3.123x 1074
z b=10a v 0 0.3 0.45 0 0.3 0.45
k, 0.833 0.833 0.833 0.833 0.833 0.833
a I k. 0.833 0.179 0.110 0.833 0.179 0.110
—_
b
3 J/R 0.295 0.294
. z/R 0.0838 0.0869
v 0 0.3 0.45 0.3
k, 0.853 0.853 0.853 0.873
G k. 0.763 0.730 0.706 0.771
2R
S4 J/R* 0.6230 0.6299
“y v 0 0.3 0.45 0 0.3 0.45
1 S k 0.499 0.499 0.499 0.502 0.502 0.502
2R
S5 R J/h 9.96x 1074 10x10-*
z ze/h 0.0752 0.0762
v 0
h/10 ky 0.236 0.223
h k 0.537 0.513
G,
—
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concerns the shear coefficients (k,, k), the torsional constant J and the shear center coordinate (z.). When
using the current method, the geometrical discretization of the cross-sections is made by 15-node triangular
prism elements for S1, $3 and S4 and 20-node rectangular prism elements for S2 and S5. In each case the
cross-section is divided into about one hundred elements.

For the circular cross-section S1 and the circular tube S4, the cugreglzt re§1211ts are in accordance with the
analytical expressions J =2 (b* —a*) and k, = k. =k = T Hf‘figtf) 712(1112:;217 e Where a is the inner
radius and b is the outer radius (Renton, 1997). Using the exact beam theory, the case of rectangular cross-
sections was recently reviewed by Sanchez (2001) who confirmed the results of Renton (1991) concerning
the dependency of the shear coefficients on the Poisson’s coefficient and the geometrical ratio of the cross-
section; for the rectangular cross-section S2 the current results conform naturally to those of Sanchez
(2001). For the non-symmetric cross-sections S3 and S5, the numerically obtained matrix [4] has the shape
given in Eq. (21) and it verifies the approximations written in Eq. (22). For the semi-circular cross-section
83, the present results are compared with those obtained by Friedman and Kosmatka (2000) using the
boundary element method. For S5, the current results are in accordance with those obtained by the classical
theory of open thin walled cross-sections (Vlassov, 1962).

5.2. Composite beams made of isotropic materials

The composite cross-sections presented in Table 2 are made of two isotropical materials. The compu-
tations also concern the structural behavior. Current results are here compared to those derived from the
common simplified composite beam theory which is described, for example, by Gay (1998) and Batoz and
Dhatt (1990). This theory is based on a kinematic approach and uses the static assumptions:
(04, 02,0,.) K 0. It leads to a structural compliance beam operator that has the same couplings as the
homogeneous case when it is expressed relatively to the (G°,y,z) system of coordinates, where G° is the
elastic center of the cross-section and (y,z) are its principal axes:

/[Ey,Ez,Eyz] ds =10,0,0]. (23)

The components of this simplified operator, denoted A%, are as follows:

4 0 0 0 0 0
ES
£ 1 _ Kz Z
0 Z+is g o 00
0 e Ly 1L X 0 0
[ AS] = GJ GJ ' kGS GJ , (24)
0 = —-£ L 0 O
GJ GJ GJ
0 0 0 0 <L 0
EI,
0 0 0 0 0 L
L L .
where
[£5.G5. 1. FL) = [ £.6.£2,£7)ds. 25
s

The determination of the homogenised torsional rigidity GJ, the shear coefficients (ky, k;) and the (3., zc)
shear center coordinates also needs two-dimensional finite element computations which may be supplied by
many available softs. For the cross-sections $6, S7, S8 and S9, described in Table 2, these computations are
obtained using the RDMS5 soft (Debard, 1997) and are compared to those derived from the components of
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Table 2
Torsional rigidity (6] ), shear coefficients (k,, k.) and position (y, z.) of the shear center for composite cross-sections made by isotropic
materials (comparison between current and available results)

Cross-sections Present Available
results results
S6 -
ZT /@ E; =72.95GPa G, = 27.51 GPa GJ/(GJ), 0.5249 0.5252
P E, =10.67 GPa G, = 4.02 GPa k, 0.428 0.430
E Smm (vi = v, =0.33) k. 0.727 0.729
S N Ze -4.90 -4.89
GE
‘\_1_\
@
30mm
§7 (@) E\/JE; =50 v, =0,v, =0 (N?J/(GJ)l 0.0395 0.0395
k, 0.833 0.833
Wio 2 k. 0.094 0.094
(b) E1/E; =50 v =0,v, =0.45 GJ/(GJ), 0.0307 0.0307
k, 0.773 0.829
@ k, 0.069 0.069
M, h (©) Ei/E;=1v,=0,v, =045 GJ/(GJ), 0.747 0.747
G k, 0.728 0.827
@ k 0.769 0.770
4
i
h/2
S8 : . _ ~
z E,=E,=1GPav, =0 GJ/(GJ), 0.8251 0.8295
G vy, =0.45 k, 0.826 0.829
g HH@ k. 0.774 0.807
g ze (mm) -0.723 —-0.704
= @
20mm
S9 EyJE, =10 v, =0.1,v, =0.3 5]/(GJ)l 1.5314 1.5317
k, 0.517 0.516
k. 0.668 0.673
L2e | ve/h 0.576 0.580
1.5h Zo/h 0.941 0.944

the exact beam theory operator A computed in the same (G°,y,z) coordinates system. When using the
current method for the computation of the A4 components, the geometrical discretization, for S6, S7, S8 and
S9, is made by 20-node rectangular prism elements. In each case the cross-section is divided into about two
hundreds elements and the computation time is about one minute on a pentium 4 microcomputer. When
using the RDMS5 soft, the same computation time is nearly needed.

In Table 2 and for each cross-section Si(i = 6,7,8,9) made of the materials 1 and 2, the homogenised
torsional rigidity GJ is normalized by the torsional rigidity (GJ), of the homogeneous cross-section made
by material 1 and having the geometry of Si. For §6 and S7, the current results show that the matrix [4] has
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numerically the same shape as [4°]. The equalities written in Eq. (25) are also numerically verified by the
components of [A4]. The example S6 is taken from a previously published work (Pastor, 2000) in which only
the torsional rigidity was studied. This study is based on kinematic and static approachs and two-dimen-

sional finite element method. It leaded to the following bounding: 0.5247 < % < 0.5253. This bounding is

here confirmed. In S6 and S7(a), the materials have the same Poisson’s coefficients (v; = v,) and the current
results confirm those of the simplified theory. However, for the cross-sections S7(b), S7(c) and S8, which
have an important Poisson’s coefficients contrast, a significant difference between the compared results is
detected in the values of the shear coefficient k,. This difference is predictable since the static assumption
(6,,0.:,0,.) < 0y used in the simplified theory is not valid for such material contrast. Moreover, for the
cross-section S8, which is not symmetric with respect to the y-axis because of the Poisson’s coefficients
contrast, the shape of the matrix [A] is different from that of [45] given in Eq. (24). The numerical values of
the [A] components, which are as follows:

4.94093 0 0 0 1.93333 0
0 14.6051 0 —383.134 0 0
0 0 15.2937 0 0 0
— 109
[4] =10 0 —383.134 0 529950 0 0 ' (26)
1.93333 0 0 0 594610 0
0 0 0 0 0 148690

show that the cross-section S8 exhibits elastic coupling, between extension and y-bending, which is not
detected by the simplified theory. In Eq. (26), A, A5, and Aj3; are expressed in N~!, A4y, Ass and Agg are in
N-'m~! and 4,5 and 4,4 are in N~' m~!. For the unsymmetric cross-section S9, the numerical values of the
[4] components also show that S9 exhibits elastic couplings between extension and the y and z bendings.

5.3. Laminated composite beams made of transversely isotropic materials

In the examples presented hereafter, symmetric and antisymmetric cross-sections consisting of four
transversely isotropic laminae are studied. The considered lamination modes are: [0, +0, 0, 0], where 0 is the
angle of the ply with respect to the longitudinal axis. The material properties are typical for graphite/epoxy
and are as follows:

Young’s moduli
E, =137.6 GPa, E, =F;=14.448 GPa

Shear moduli
G12 = G13 = G23 = 5.848 GPa

Poisson’s ratios
Vi = Vi3 = V3 = 0.21

where the subscript 1 refers to the graphite fiber direction. The rectangular cross-sectional area is assumed
to be bounded by the lines y = +a and z = +b = +a/2, and the four laminae are of identical thickness,
h = b/4 (Fig. 1). The geometrical discretization is made by 20-node rectangular prism elements where the
cross-section is divided into 392 rectangles. (As in any finite element elasticity analysis, to achieve a required
accuracy, defined by an error estimator, an adaptative procedure has to be used to determine the suitable
number of elements (see, e.g., Zienkiewicz et al., 1989; Batoz and Dhatt, 1990)).

The numerically obtained structural compliances A;;, expressed relatively to the (G,y,z) coordinates
system, show that the elastic couplings in the symmetric cross-sections are of “extension-bending” (A;, # 0)
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Fig. 1. Geometry and mesh of the symmetric and antisymmetric cross-sections.

and ‘“‘bending-twist” (A4s # 0) whereas they are of “extension-twist” (A4 # 0) and “y—z-bendings”
(A5 # 0) in the antisymmetric cross-sections.

The compliances associated to these couplings are presented in Figs. 2 and 3 as functions of 0. The
“extension-bending” and “‘extension-twist” couplings are also illustrated in Fig. 4 which presents the Saint—
Venant deformations of the beams [0, 430, 30,0] under traction. The warpings and the in-plane defor-
mations, presented in Fig. 5 and corresponding to the contributions of each of the six beam internal forces,
follow from the computation of the operators .« and % as follows:

'ff)\‘/larping = ((JZ{(X) ’ T(X) + %(X> ’ M(X)) : ex)e)m } (27)
éisr\;—planc = %(X) ’ T(x) + %(X) : M(X) - éi\‘//arping’

From Fig. 5, it can be noted that the warpings associated to a traction 7, and those associated to bending
moments M,, M. are significantly different for symmetric and antisymmetric cross-sections, whereas they are
qualitatively similar for the other internal forces. The inverse situation is observed in the same Fig. 5 for the
in plane deformations.

Fig. 6 is devoted to the well-known free edge effect detected in composite laminates under uniform axial
extension (Pipes and Pagano, 1970; El Fatmi and Zenzri, 2002). For different values of 0, Fig. 6 presents the

1.6
Extension-bending .
(A12/ A66).(S/ Iz) 4

1.2 -

Bending-twist

0.8 r
L (A45/ As5)
+6

Lo |
0.0

0 45 90

Fig. 2. Compliances associated to extension-bending and bending-twist couplings in symmetric laminated beams.
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y-z-bending
87 (A25/ A55)a 10E+2
6 Extension-twist |

(A14/ A44) a 10E+2

4
2
0
2 e
0 45 90

Fig. 3. Compliances associated to extension-twist and y—z-bending couplings in antisymmetric laminated beams.

a-Symmetric laminated
composite beam [0,30,30,0].
Extension-bending coupling.

Initial position

Position after
deformation

b-Antiymmetric laminated
composite beam [0,-30,30,0].
Extension-twist coupling.

Initial position

Position after ; T
deformation — x

Fig. 4. Three-dimensional Saint-Venant deformation in laminated beams exhibiting elastic couplings in an extension test.
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Fig. 5. Warpings and in-plane deformations associated to each of the internal forces in symmetric and antisymmetric laminated cross-

sections.

Fig. 6. Free edge effect in an extension test. Distribution of the interlaminar stress o,, along the interface 0 — 6.
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Fig. 7. Distributions of the shear stresses o,, within the thickness (y = 0) of symmetric and antisymmetric laminated cross-sections
subjected to a shear force 7..

! z/b
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I A 10E+2 |
| Tl Oyz. (S/Tz)
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Fig. 8. Distributions of the shear stresses o,. within the thickness (y = 0) of symmetric and antisymmetric cross-sections subjected to a
shear force T..

concentrations of the o, stresses at the 0 — 6 interface and near the free edge, for beams subjected to a
traction 7; the results are nearly identical for symmetric and antisymmetric cross-sections. It appears that
near the free edge the normal stresses o.. are of traction only when 0 is greater than a value of about 65°.
Finally, Figs. 7 and 8 present the variations within the cross-section thickness of the shear stresses a,, and
o,. due to a shear force T..

6. Conclusion

The results presented in this paper on structural behavior and three-dimensional displacements and
stresses for a representative set of sections, may be added to the first illustrations made by Sanchez (2001)
and El Fatmi and Zenzri (2002) to show again the efficiency and accuracy of the exact beam theory in the
study of arbitrary elastic multi-material cross-sections. The proposed numerical method uses three-
dimensional available finite elements and classical elasticity formulation, which make it easy to implement
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in standard elasticity softs. It constitutes an adequate tool for the study of the structural behavior of any
cross-section and it provides three-dimensional Saint—Venant solutions which will allow the computations
of local effects. This tool will also be useful for the analysis of experimental composite tests which are more
structure tests rather than material tests.

Appendix A

This appendix is devoted to the relations, discussed in Section 4, that have to be imposed between the
degrees of freedom of each finite element. These relations are here written for the reference finite elements of
Fig. 9. In the following, [u;, v;, w;] denote the displacement components of the node i. The notations:

u=up,uy,...,uy], v=1[v1,00,...,08], W=[w,Wa...,wyn], n=1[M,0-.-,0y], N=15,20,
are also used.

The 23 linear relations for the 15-node triangular prism element are as follows:

filu) =0; ie€{2,5-9},
)

filv)=0; ie{l,3,5-9},
filw)=0; ie€{1,4,5-9},
fa(v) + f3(w) = 0,
S3(u) +2/5(v) = 0,
fa(u) +2f2(w) = 0,

fi(n)
f2(1) = mo +ny — 21,

f3(1) = n3 = 39 — mp — 4ny + 3y + 4y,

fa(n) = ns — 39 — dng + 3 — iy + 4nys,

f5(1) = =4y + 4ng + 4y + 43 + 4y — dnys — 4y — dny,
fo(n) = n3 —ny — 1o + M1z + 207 — 21,

f1(n) =ns —ny — 209 — nyo + 207 + My,

Ss(1) = =2n3 — 2y + 4y + 2nyy + 270 — 4y,

fo(1n) = =215 — 2y + 4ng — dnys + 2110 + 20y

Za ZA
7 ,6 5 1
1
12 1
19 1_8 17 [1
8e L
———————————————————————— >V
-1 1 2' 02() 3 e16
-1 5 10
1
13 14 157y

Fig. 9. The 15-node triangular prism element and the 20-node rectangular prism element in the reference system of coordinates.
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The 32 linear relations for the 20-node rectangular prism element are as follows:

gi(u)=0; ic{2,5-12},
)

g(v)=0; ie{l,3,5-12},
gw)=0; ie{l,4,5-12},
g4(v) + g3(w) =0,
g3(u) +2g:(v) = 0,
ga(u) + 283 (w) = 0,

where

gi(n) = =21y + 25 — M7 — 206 + 17 + 2059 — 204 + 05 + 2014 + 13 — 135
+ 1y + 2106 — M3 — 215 — My,

(
gu(n) =my — 2mg + 13+ 2ng — 20y + My9 — 17 — Mis + 20y — s — Mz + 1y,
g12(n) = 20y — Mg + My7 + 2059 — 3 — 2016 — M3 + 1y +Mys — 205 + 17 — 5.
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