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Abstract

The purpose of this paper is to simplify the numerical implementation of the exact elastic beam theory in order to

allow an inexpensive and large use of it. A finite element method is proposed for the computation of the beam operators

involved in this theory. These operators are required for the calculation of the one-dimensional structural beam

behavior and the three-dimensional Saint–Venant solution. The method is derived from a three-dimensional charac-

terization of the beam operators and consists in solving seven particular elasticity problems defined on a longitudinal

slice of beam. The computation is immediate when using standard three-dimensional elasticity softs that afford the

quadratic 15-node triangular prism element or the 20-node rectangular prism element. The discretization is reduced

since only one element is required in the longitudinal direction of the beam. The proposed method is applied to

homogeneous and composite beams made of isotropic materials, and to symmetric and antisymmetric laminated beams

made of transversely isotropic materials. Structural beam rigidities, elastic couplings, warpings, and three-dimensional

stresses are provided and compared to available results.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Saint–Venant solution; Beam operators; Finite element method; Shear coefficients; Torsional rigidity; Elastic couplings;

Warpings; Shear stresses; Interlaminar stresses; Free-edge effect
1. Introduction

The exact beam theory is established by Ladev�eze and Simmonds (1998) for straight elastic beams. It is

valid for anisotropic materials, heterogeneous and axially piecewise constant cross-sections, arbitrary

loadings, and any shape ratios. The first implementations of this theory (Ladev�eze et al., 2001; Sanchez,

2001; El Fatmi and Zenzri, 2002) confirmed and illustrated its pertinence for the analysis of any elastic

beams, and particularly composite ones. The use of composite beams is now a real trend in many engi-

neering applications. This trend calls for the development of efficient tools, suitable for the analysis of

beams exhibiting three-dimensional effects, for which the classical beam theory assumptions are no more

valid. In that purpose, and besides the expensive fully three-dimensional finite element analysis, many
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refined beam theories were developed during the last decades (see, e.g., Reddy, 1989; Soldatos and Watson,

1997; Kim and White, 1997; Rand, 2001; Karama et al., 2003, and references therein). All of these theories

are built upon simplifying kinematic or static assumptions that cannot be always valid. By contrast, the

exact beam theory is free of a priori assumptions, and enables a systematic and inexpensive calculation of
non-classical composite effects such as elastic couplings, warpings, and free edge-effects due to the three-

dimensional interlaminar stresses (El Fatmi and Zenzri, 2002).

In the exact beam theory, the three-dimensional solution of an equilibrium elasticity beam problem is

viewed as the sum of a long wavelength part, called Saint–Venant solution, and a short wavelength part,

called the localized solution. The Saint–Venant solution has a fundamental role in the exact beam theory

since it constitutes the interior part of the three-dimensional exact solution and it is also needed to evaluate

local effects. The expression of the Saint–Venant solution, which is given in Section 2, involves the cross-

sectional stress resultants, displacements and rotations, and characteristic beam operators depending on the
materials and the cross-section geometry. The cross-sectional stress resultants, displacements, and rotations

are solution of a one-dimensional elastic beam problem which includes a characteristic beam compliance

operator that describes the structural behavior of the beam. The computation of all the characteristic

operators is the principal step in the implementation of the exact beam theory. The numerical method used

in Ladev�eze et al. (2001) and Sanchez (2001) requires three-dimensional 44-node rectangular prism finite

elements of fourth degree. In an earlier method developed by the authors (El Fatmi and Zenzri, 2002), only

the cross-section has to be discretized and then only two-dimensional finite elements are needed. However,

the two methods are not suited to an immediate use of standard finite element elasticity softs, since in both
of them the obtained rigidity matrices are different from those of usual elasticity problems.

The aim of this paper is to simplify the computation of the beam operators in order to allow a larger use

of the exact beam theory. In that purpose and starting from the beam operators characterization, estab-

lished in El Fatmi and Zenzri (2002) and synthetized in Section 3, a three-dimensional formulation of this

characterization is derived in Section 4, leading to the determination of the beam operators by a numerical

method that can be immediately and inexpensively handled using standard finite element softs. Section 5 is

then devoted to illustrations of the exact beam theory using the proposed method to analyse homogeneous

and composite beams.
2. Saint–Venant solution and beam operators

The reference problem in the exact beam theory is a three-dimensional equilibrium beam problem. The

beam of ex axis (vectors are highlighted in boldface characters) is occupying a prismatic domain X of cross-

section S and length L. Slat is the lateral surface and S0 and SL are the extremity cross-sections. The materials

constituting the beam are linear elastic and the elasticity tensor field is denoted K. The beam is in equi-

librium under a body force density f d on X, and surface force densities Fd, H0 and HL on Slat, S0 and SL,
respectively. The data S, K, f d and Fd are x-constant. The equations of the reference problem are:
divrþ f d ¼ 0 in X;
eðnÞ ¼ 1

2
ðrtnþrnÞ in X;

r ¼ K : eðnÞ in X;
r � n ¼ Fd on Slat

9>>=>>; ð1Þ

r � ð�exÞ ¼ H0 on S0;
r � ex ¼ HL on SL;

�
ð2Þ
where n is the displacement vector, r is the stress tensor, and n is the unit vector that is normal and external
to Slat. The solution of this problem is denoted by hsi ¼ hr; ni, where n is unique within an arbitrary rigid
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body displacement. The Saint–Venant solution, denoted by hssvi ¼ hrsv; nsvi, is the unique x-polynomial

solution that exactly satisfies Eq. (1) and satisfies the boundary conditions of Eq. (2) only in terms of

resultant (force and moment) of the stresses acting on the extremity cross-sections. Thus, hssvi extends the
solution of the well-known Saint–Venant problem in which the beam is isotropic, homogeneous and
subjected to only extremity loadings.

As given by Ladev�eze and Simmonds (1998), the expression of the Saint–Venant solution is:
nsv ¼ uðxÞ þ xðxÞ ^ X þAðXÞ � TðxÞ þBðXÞ �MðxÞ þWdðXÞ;
rsv � ex ¼ A0ðXÞ � TðxÞ þB0ðXÞ �MðxÞ þ CdðXÞ;

�
ð3Þ
where xex þ X denotes the position vector of a point in X; X belongs to S. The operatorsA, B,A0,B0,Wd

and Cd depend on the materials and the geometry of the cross-section. Wd and Cd are also linearly

dependent on the loading [f d;Fd]. A0, B0 and Cd are unique and they verify:
R
S A

0 dS ¼
R
S X ^B0 dS ¼ I;

R
S B

0 dS ¼
R
S X ^A0 dS ¼ O;R

S C
d dS ¼

R
S X ^ Cd dS ¼ 0;

�
ð4Þ
where I is the identity tensor and O is the zero tensor. The cross-sectional stress resultants,
TðxÞ ¼
Z
S
r � ex dS ¼

Z
S
rsv � ex dS; MðxÞ ¼

Z
S
X ^ r � ex dS ¼

Z
S
X ^ rsv � ex dS; ð5Þ
verify the beam equilibrium equations:
T ;x þ
R
S f

d dS þ
R
oS F

d ds ¼ o;

M ;x þ ex ^ T þ
R
S X ^ f d dS þ

R
oS X ^ Fd ds ¼ o;

)
ð6Þ
where ð�Þ;x is the derivative with respect to x. The operators A, B and Wd are taken such as:
R
S A

0T �AdS ¼
R
S A

0T �BdS ¼
R
S B

0T �AdS ¼
R
S B

0T �BdS ¼ O;R
S A0T �Wd �AT � Cd
� �

dS ¼ 0;
R
S B0T �Wd �BT � Cd
� �

dS ¼ 0;

�
ð7Þ
where ð�ÞT is the transpose operator. The conditions of Eq. (7) are always possible, since nsv is unique within

an arbitrary rigid body displacement, and they lead to cross-sectional displacement, u, and rotation, x,

which verify:
uðxÞ ¼
R
S A0T � n�AT � ðr � exÞ
� �

dS ¼
R
S A0T � nsv �AT � ðrsv � exÞ
� �

dS;
xðxÞ ¼

R
S B0T � n�BT � ðr � exÞ
� �

dS ¼
R
S B0T � nsv �BT � ðrsv � exÞ
� �

dS:

�
ð8Þ
The cross-sectional strains c ¼ u;x þ ex ^ x and v ¼ x;x are related to the stress resultants by the fol-

lowing one-dimensional structural behavior equation:
c

v

� �
¼ ½K� T

M

� �
þ cd

vd

� �
;

cd ¼
R
S A

T � f d dS þ
R
oS A

T � Fd ds;
vd ¼

R
S B

T � f d dS þ
R
oS B

T � Fd ds:

(
ð9Þ
The structural compliance operator of the beam, K, is symmetric, definite, positive, and depends on the

materials and the geometry of the cross-section. Eqs. (6) and (9) and boundary conditions on S0 and SL,
form the one-dimensional problem of the exact elastic beam theory. The exactitude of this theory follows

from Eqs. (5) and (8) which show that the cross-sectional stress resultants, displacements and rotations

defined on the exact solution hsi coincide with those of the Saint–Venant solution hssvi; then the compliance

operator K is also exact. For a non-x-constant loading [f dðxÞ;FdðxÞ], the Saint–Venant solution and the
one-dimensional problem are also defined by Eqs. (3) and (9), except that the values of Wd, Cd, cd and vd

become dependent on x. For such non-x-constant loading, Ladev�eze and Simmonds (1998) proved that the
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Saint–Venant solution remains an interior solution of the three-dimensional equilibrium beam problem and

they also proved that Eqs. (5) and (8) are still verified.
3. Characterization of the beam operators

In a previous work the authors established that the beam operators can be determined by the minimi-

zation of seven functionals derived from the potential energies associated to seven elasticity problems (El

Fatmi and Zenzri, 2002). In each of these problems, the loading is taken such as the exact solution, hsi,
coincide with that of Saint–Venant, hssvi. The first six problems are problems of traction, torque, bendings

and shear forces. They allow the determination of A, B, A0, B0 and K. For a given loading [f d;Fd], a

seventh problem is devoted to the determination of Wd and Cd. The main results of El Fatmi and Zenzri
(2002) are synthesized in the following proposition.

Notations
A ¼ ½U1;U2;U3�; B ¼ ½U4;U5;U6�; A0 ¼ ½C1;C2;C3�; B0 ¼ ½C4;C5;C6�;

f 1ex þ f 2ey þ f 3ez ¼
R
S f

d dS þ
R
oS F

d ds;

f 4ex þ f 5ey þ f 6ez ¼
R
S X ^ f d dS þ

R
oS X ^ Fd ds;

k� ¼

k�1
k�4
k�5
k�6

26664
37775; V� ¼ V�ðy; zÞ; �n�ðk�;V�Þ ¼

k�1xþ k�5xz� k�6xy þ V �
x

1
2
k�6x

2 � k�4xzþ V �
y

� 1
2
k�5x

2 þ k�4xy þ V �
z

264
375; ð10Þ

DðV�Þ ¼ 1
2
ex � V� þ V� � exð Þ; a� ¼ �

R
S B

0T � V� dS; b� ¼ �
R
S A

0T � V� dS; ð11Þ
where (ex; ey ; ez) is an orthonormal base and � is the tensorial product operator.

Proposition. The minimisation of the functionals:
Jkð�n�ðk�;V�ÞÞ ¼ L
2

Z
S
eð�n�Þ : K : eð�n�ÞdS �Lkð�n�Þ; k ¼ 1; . . . ; 6; d; ð12Þ
where the linear form Lk are:
Lk ¼ Lk�k ; k ¼ 1; 4; 5; 6;

L2 ¼ L
R
S eð�n�Þ : K : DðU6 � b6

yey � b6
zezÞ � C6 � V�

h i
dS;

L3 ¼ �L
R
S eð�n�Þ : K : DðU5 � b5

yey � b5
zezÞ � C5 � V�

h i
dS;

Ld ¼ L
R
S eð�n�Þ : K :

P6

i¼1 f
iDðU iÞ þ f d �

P6

i¼1 f
iC i

� �
� V�

h i
dS þ L

R
oS F

d � V� ds;

9>>>>>>=>>>>>>;
ð13Þ
leads to the beam operators as follows:

• For k ¼ 1; 4; 5; 6 and �nkðkk;VkÞ minimising Jk, we have:
C k

Ki
¼ K : eð�nkÞ � ex; Uk ¼ Vk þ bk þ ak ^ X ;

k ¼ kki ði ¼ 1; 4; 5; 6Þ; K2k ¼ akz ; K3k ¼ �aky :

)
ð14Þ
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• For �n2ðk2;V2Þ minimising J 2, we have:
C2

U

C3

U

Cd

W

¼ K : eð�n2Þ � DðU6 � b6
yey � b6

zezÞ
h i

� ex;
2 ¼ V2 þ b2 þ a2 ^ X ; K22 ¼ b6

y þ a2z ; K32 ¼ b6
z � a6y :

)
ð15Þ
• For �n3ðk3;V3Þ minimising J 3, we have:
¼ K : eð�n3Þ þ DðU5 � b5
yey � b5

zezÞ
h i

� ex;
3 ¼ V3 þ b3 þ a3 ^ X ; K23 ¼ �b5

y þ a3z ; K33 ¼ �b5
z � a3y :

)
ð16Þ
• For
�
ndðkd;VdÞ minimising Jd, we have:
¼ K : ½eð�ndÞ �
P6

i¼1 f
iDðU iÞ� � ex;

d ¼ Vd þ bd þ
R
S A

T � Cd dS þ ðad þ
R
S B

T � Cd dSÞ ^ X :

)
ð17Þ
El Fatmi and Zenzri (2002) performed the minimisation of the functionals Jk by using a two-dimensional

finite element method where the unknown are the scalars kki and the degrees of freedom of the fields Vk. The

computation is economical since only the cross-section has to be discretized, but the rigidity matrix is

different from the two-dimensional elasticity matrices. Thus, the implementation of this method within

available softs needs the introduction of a new finite element model. Such work can be avoided by the use of
a three-dimensional formulation of the beam operators characterization. The three-dimensional calcula-

tions have also the advantage of being more appropriate to the study of localized effects which are com-

pletely three-dimensional.
4. Three-dimensional characterization and numerical method

Using the form of the fields �n� (Eq. (10)), which especially leads to x-constant strain tensors eð�n�ðk�;V�ÞÞ,
the following expressions of the functionals Jk and the linear formsLk, can be easily derived from Eqs. (12)

and (13):
Jkð�n�Þ ¼ 1

2

Z
X
eð�n�Þ : K : eð�n�ÞdX�Lkð�n�Þ; k ¼ 1; . . . ; 6; d; ð18Þ

L1 ¼ 1
S

R
SL
�n� � ex dS �

R
S0
�n� � ex dS

� �
;

L4 ¼ 1
I

R
SL
�n� � ðex ^ XÞdS

R
S0
�n� � ðex ^ XÞdS

� �
; I ¼

R
S X � XdS;

L5 ¼ � 2
SL

R
SL
�n� � ez dS �

R
S0
�n� � ezdS

� �
;

L6 ¼ 2
SL

R
SL
�n� � ey dS �

R
S0
�n� � ey dS

� �
;

L2 ¼
R
X eð�n

�Þ : K : D U6 � b6
yey � b6

zez

� �
dX� L

R
S0
�n� � C6 dS;

L3 ¼ �
R
X eð�n

�Þ : K : D U5 � b5
yey � b5

zez

� �
dXþ L

R
S0
�n� � C5 dS;

Ld ¼
R
X eð�n

�Þ : K :
P6

i¼1 f
iDðUiÞdXþ L

R
S0
�n� � fd �

P6

i¼1 f
iCi

� �
dS þ L

R
oS0

�n� � Fd ds:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

ð19Þ
To obtain Eq. (19), the axis of the beam is supposed to go through the geometric centers of the cross-

sections so that:
R
S y dS ¼

R
S zdS ¼ 0.

In the expressions of the linear forms Lk (Eq. (19)), the variables k� and V� do not appear explicitly; the

only variable is now the displacement field �n�. Thus, the problem of determining a field �nk minimising a
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functional Jk, appears as a displacement formulation of an equilibrium problem in which the elastic beam

occupying the three-dimensional domain X is submitted to a loading defined by the linear form Lk. Then,

the three-dimensional finite element method is obviously appropriated to the numerical computation of the

fields �nk. Since these �nk fields are quadratic relatively to the x coordinate (Eq. (10)), the quadratic 15-node
triangular prism element and the 20-node rectangular prism element are, among the common finite ele-

ments, the most suitable to the �nk computation. And it is clear that in the x direction only one element has

to be used, whereas the cross-section should be discretized as necessary.

To ensure the conformity of this finite element method with the vectorial space of the fields �n�, relations
must be imposed between the degrees of freedom of each element. There are 23 relations for the 15-node

element and 32 relations for the 20-node element. These relations, given in Appendix A for the reference

finite elements, are easily obtained by setting the coefficients of the x-monomials in the finite element basis

functions in accordance with those of Eq. (10). These coefficients also must be constant within all the
elements; however, the continuity of the base functions of the finite element space and the 23 or 32 imposed

relations make this condition automatically satisfied.

The chararacteristic beam operators are derived from the solutions �nk as given in Eqs. (14)–(17), in which

the vectors Vk are just the vectors �nkjS0 . In Eq. (14), the components of the compliance operator may also be

obtained by:
Kik ¼
1

L

Z
X
eð�niÞ : K : eð�nkÞdX 8i ¼ 1; . . . ; 6 and 8k ¼ 1; 4; 5; 6: ð20Þ
As shown in Eq. (18), the seven problems are solved using the same rigidity matrix. However, the

minimisations of J 1; J 4; J 5 and J 6 must be done before those of J 2 and J 3; and, for a given loading [f d;Fd],
the minimisation of Jd must be preceded by the resolution of the six other problems.
5. Applications

The numerical method presented in the previous section is implemented within the finite element soft

Castem2000 (Le Fichoux, 1998). For given cross-sectional geometry and materials, the operators

A0;B0;A;B and K are computed. From these operators, three-dimensional stresses and displacements,
hrsv; nsvi, can be derived for any cross-section subjected to internal forces (T;M).

5.1. Homogeneous isotropic beams

The first applications are devoted to the analysis of the structural behavior of homogeneous cross-

sections made of isotropic materials. For such cross-sections, the compliance operator K can be derived

from the solution of the classical Saint–Venant problem. Relatively to the (G; y; z) system of coordinates,

where G is the geometric center of the cross-section and (y; z) are its principal axes, the components of K are
classically expressed as follows:
½K� ¼

1
ES 0 0 0 0 0

0
z2c
GJ þ 1

kyGS
K23 K24 0 0

0 K23
y2c
GJ þ 1

kzGS
K34 0 0

0 K24 K34
1
GJ 0 0

0 0 0 0 1
EIy

0

0 0 0 0 0 1
EIz

266666666664

377777777775
; ð21Þ
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where E is the Young�s modulus; G ¼ E=2ð1þ mÞ, the shear modulus; m, the Poisson�s coefficient; (Iy ; Iz), the
principal inertias of the cross-section; (ky ; kz), the shear coefficients; (yc; zc), the coordinates of the shear center
C and J is the torsional constant. For an y–z-symmetrical cross-section, C and G coincide and the matrix [K]
is diagonal. For a non-symmetrical cross-section the following approximations are commonly used:
Table

Torsio

parison

Cro
K23 ¼ � yczc
GJ

; K24 ¼
zc
GJ

; K34 ¼ � yc
GJ

: ð22Þ
Except for particular cross-sections, such as the circular ones where analytical expressions are available, the

computation of J and (ky ; kz) is generally handled using a two-dimensional finite element method or one of

the numerous simplified methods (see, e.g, Batoz and Dhatt, 1990).
Table 1 provides, for five cross-sections denoted S1, S2, S3, S4 and S5, a comparison between the

numerical results obtained by the current method and those available in the literature. This comparison
1

nal contant (J ), shear coefficients (ky ; kz) and position (zc) of the shear center for homogeneous isotropic cross-sections (com-

between current and available results)

ss-sections Present results Available results

J=R4 1.56 1.57

m 0 0.3 0.45 0 0.3 0.45

k 0.853 0.846 0.841 0.857 0.850 0.846

J=b4 3.124· 10�4 3.123· 10�4

m 0 0.3 0.45 0 0.3 0.45

ky 0.833 0.833 0.833 0.833 0.833 0.833

kz 0.833 0.179 0.110 0.833 0.179 0.110

J=R4 0.295 0.294

zc=R 0.0838 0.0869

m 0 0.3 0.45 0.3

ky 0.853 0.853 0.853 0.873

kz 0.763 0.730 0.706 0.771

J=R4 0.6230 0.6299

m 0 0.3 0.45 0 0.3 0.45

k 0.499 0.499 0.499 0.502 0.502 0.502

J=h4 9.96· 10�4 10 · 10�4

zc=h 0.0752 0.0762

m 0

ky 0.236 0.223

kz 0.537 0.513
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concerns the shear coefficients (ky ; kz), the torsional constant J and the shear center coordinate (zc). When

using the current method, the geometrical discretization of the cross-sections is made by 15-node triangular

prism elements for S1, S3 and S4 and 20-node rectangular prism elements for S2 and S5. In each case the

cross-section is divided into about one hundred elements.
For the circular cross-section S1 and the circular tube S4, the current results are in accordance with the

analytical expressions J ¼ p
2
ðb4 � a4Þ and ky ¼ kz ¼ k ¼ 6ða2þb2Þ2ð1þmÞ2

ða4þb4Þð7þ14mþ8m2Þþ2a2b2ð17þ34mþ16m2Þ where a is the inner

radius and b is the outer radius (Renton, 1997). Using the exact beam theory, the case of rectangular cross-

sections was recently reviewed by Sanchez (2001) who confirmed the results of Renton (1991) concerning

the dependency of the shear coefficients on the Poisson�s coefficient and the geometrical ratio of the cross-

section; for the rectangular cross-section S2 the current results conform naturally to those of Sanchez

(2001). For the non-symmetric cross-sections S3 and S5, the numerically obtained matrix [K] has the shape
given in Eq. (21) and it verifies the approximations written in Eq. (22). For the semi-circular cross-section
S3, the present results are compared with those obtained by Friedman and Kosmatka (2000) using the

boundary element method. For S5, the current results are in accordance with those obtained by the classical

theory of open thin walled cross-sections (Vlassov, 1962).

5.2. Composite beams made of isotropic materials

The composite cross-sections presented in Table 2 are made of two isotropical materials. The compu-

tations also concern the structural behavior. Current results are here compared to those derived from the

common simplified composite beam theory which is described, for example, by Gay (1998) and Batoz and

Dhatt (1990). This theory is based on a kinematic approach and uses the static assumptions:

ðryy ; rzz; ryzÞ � rxx. It leads to a structural compliance beam operator that has the same couplings as the

homogeneous case when it is expressed relatively to the (Ge; y; z) system of coordinates, where Ge is the

elastic center of the cross-section and (y; z) are its principal axes:
Z
S
½Ey;Ez;Eyz�dS ¼ ½0; 0; 0�: ð23Þ
The components of this simplified operator, denoted KS, are as follows:
½KS � ¼

1eES 0 0 0 0 0

0
z2ceGJ þ 1

ky eGS � yczceGJ zceGJ 0 0

0 � yczceGJ y2ceGJ þ 1

kz eGS � yceGJ 0 0

0 zceGJ � yceGJ 1eGJ 0 0

0 0 0 0 1eEIy 0

0 0 0 0 0 1eEIz

266666666666664

377777777777775
; ð24Þ
where
fES ; fGS ; fEIy ; fEIzh i
¼

Z
S
½E;G;Ez2;Ey2�dS: ð25Þ
The determination of the homogenised torsional rigidity fGJ , the shear coefficients (ky ; kz) and the (yc; zc)
shear center coordinates also needs two-dimensional finite element computations which may be supplied by
many available softs. For the cross-sections S6, S7, S8 and S9, described in Table 2, these computations are

obtained using the RDM5 soft (Debard, 1997) and are compared to those derived from the components of



Table 2

Torsional rigidity (eGJ ), shear coefficients (ky ; kz) and position (yc; zc) of the shear center for composite cross-sections made by isotropic

materials (comparison between current and available results)

Cross-sections Present

results

Available

results

E1 ¼ 72:95 GPa G1 ¼ 27:51 GPa

E2 ¼ 10:67 GPa G2 ¼ 4:02 GPa

(m1 ¼ m2 ¼ 0:33)

eGJ=ðGJÞ1 0.5249 0.5252

ky 0.428 0.430

kz 0.727 0.729

zc )4.90 )4.89

(a) E1=E2 ¼ 50 m1 ¼ 0; m2 ¼ 0 eGJ=ðGJÞ1 0.0395 0.0395

ky 0.833 0.833

kz 0.094 0.094

(b) E1=E2 ¼ 50 m1 ¼ 0; m2 ¼ 0:45 eGJ=ðGJÞ1 0.0307 0.0307

ky 0.773 0.829

kz 0.069 0.069

(c) E1=E2 ¼ 1 m1;¼ 0; m2 ¼ 0:45 eGJ=ðGJÞ1 0.747 0.747

ky 0.728 0.827

kz 0.769 0.770

E1 ¼ E2 ¼ 1 GPa m1 ¼ 0

m2 ¼ 0:45

eGJ=ðGJÞ1 0.8251 0.8295

ky 0.826 0.829

kz 0.774 0.807

zc (mm) )0.723 )0.704

E2=E1 ¼ 10 m1 ¼ 0:1; m2 ¼ 0:3 eGJ=ðGJÞ1 1.5314 1.5317

ky 0.517 0.516

kz 0.668 0.673

yc=h 0.576 0.580

Zc=h 0.941 0.944
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the exact beam theory operator K computed in the same (Ge; y; z) coordinates system. When using the

current method for the computation of the K components, the geometrical discretization, for S6, S7, S8 and
S9, is made by 20-node rectangular prism elements. In each case the cross-section is divided into about two

hundreds elements and the computation time is about one minute on a pentium 4 microcomputer. When

using the RDM5 soft, the same computation time is nearly needed.

In Table 2 and for each cross-section Siði ¼ 6; 7; 8; 9Þ made of the materials 1 and 2, the homogenised

torsional rigidity fGJ is normalized by the torsional rigidity ðGJÞ1 of the homogeneous cross-section made

by material 1 and having the geometry of Si. For S6 and S7, the current results show that the matrix [K] has
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numerically the same shape as [KS ]. The equalities written in Eq. (25) are also numerically verified by the

components of [K]. The example S6 is taken from a previously published work (Pastor, 2000) in which only

the torsional rigidity was studied. This study is based on kinematic and static approachs and two-dimen-

sional finite element method. It leaded to the following bounding: 0:5247 <
eGJ

ðGJÞ1
< 0:5253. This bounding is

here confirmed. In S6 and S7ðaÞ, the materials have the same Poisson�s coefficients (m1 ¼ m2) and the current

results confirm those of the simplified theory. However, for the cross-sections S7ðbÞ, S7ðcÞ and S8, which
have an important Poisson�s coefficients contrast, a significant difference between the compared results is

detected in the values of the shear coefficient ky . This difference is predictable since the static assumption
ðryy ; rzz; ryzÞ � rxx used in the simplified theory is not valid for such material contrast. Moreover, for the

cross-section S8, which is not symmetric with respect to the y-axis because of the Poisson�s coefficients

contrast, the shape of the matrix [K] is different from that of [KS ] given in Eq. (24). The numerical values of

the [K] components, which are as follows:
½K� ¼ 10ð�6Þ

4:94093 0 0 0 1:93333 0

0 14:6051 0 �383:134 0 0

0 0 15:2937 0 0 0
0 �383:134 0 529950 0 0

1:93333 0 0 0 594610 0

0 0 0 0 0 148690

26666664

37777775; ð26Þ
show that the cross-section S8 exhibits elastic coupling, between extension and y-bending, which is not

detected by the simplified theory. In Eq. (26), K11;K22 and K33 are expressed in N�1, K44;K55 and K66 are in

N�1 m�1 and K15 and K24 are in N�1 m�1. For the unsymmetric cross-section S9, the numerical values of the

[K] components also show that S9 exhibits elastic couplings between extension and the y and z bendings.

5.3. Laminated composite beams made of transversely isotropic materials

In the examples presented hereafter, symmetric and antisymmetric cross-sections consisting of four

transversely isotropic laminae are studied. The considered lamination modes are: [0;�h; h; 0], where h is the

angle of the ply with respect to the longitudinal axis. The material properties are typical for graphite/epoxy

and are as follows:

Young�s moduli
E1 ¼ 137:6 GPa; E2 ¼ E3 ¼ 14:448 GPa
Shear moduli
G12 ¼ G13 ¼ G23 ¼ 5:848 GPa
Poisson�s ratios
m12 ¼ m13 ¼ m23 ¼ 0:21
where the subscript 1 refers to the graphite fiber direction. The rectangular cross-sectional area is assumed

to be bounded by the lines y ¼ �a and z ¼ �b ¼ �a=2, and the four laminae are of identical thickness,

h ¼ b=4 (Fig. 1). The geometrical discretization is made by 20-node rectangular prism elements where the

cross-section is divided into 392 rectangles. (As in any finite element elasticity analysis, to achieve a required

accuracy, defined by an error estimator, an adaptative procedure has to be used to determine the suitable

number of elements (see, e.g., Zienkiewicz et al., 1989; Batoz and Dhatt, 1990)).

The numerically obtained structural compliances Kij, expressed relatively to the (G; y; z) coordinates
system, show that the elastic couplings in the symmetric cross-sections are of ‘‘extension-bending’’ (K12 6¼ 0)



Fig. 1. Geometry and mesh of the symmetric and antisymmetric cross-sections.
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and ‘‘bending-twist’’ (K45 6¼ 0) whereas they are of ‘‘extension-twist’’ (K14 6¼ 0) and ‘‘y–z-bendings’’
(K25 6¼ 0) in the antisymmetric cross-sections.

The compliances associated to these couplings are presented in Figs. 2 and 3 as functions of h. The
‘‘extension-bending’’ and ‘‘extension-twist’’ couplings are also illustrated in Fig. 4 which presents the Saint–

Venant deformations of the beams [0;�30; 30; 0] under traction. The warpings and the in-plane defor-

mations, presented in Fig. 5 and corresponding to the contributions of each of the six beam internal forces,

follow from the computation of the operators A and B as follows:
nsvwarping ¼ ððAðXÞ � TðxÞ þBðXÞ �MðxÞÞ � exÞex;
nsvin�plane ¼ AðXÞ � TðxÞ þBðXÞ �MðxÞ � nsvwarping:

�
ð27Þ
From Fig. 5, it can be noted that the warpings associated to a traction Tx and those associated to bending
momentsMy ;Mz are significantly different for symmetric and antisymmetric cross-sections, whereas they are

qualitatively similar for the other internal forces. The inverse situation is observed in the same Fig. 5 for the

in plane deformations.

Fig. 6 is devoted to the well-known free edge effect detected in composite laminates under uniform axial

extension (Pipes and Pagano, 1970; El Fatmi and Zenzri, 2002). For different values of h, Fig. 6 presents the
Fig. 2. Compliances associated to extension-bending and bending-twist couplings in symmetric laminated beams.



Fig. 3. Compliances associated to extension-twist and y–z-bending couplings in antisymmetric laminated beams.

Fig. 4. Three-dimensional Saint–Venant deformation in laminated beams exhibiting elastic couplings in an extension test.
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Fig. 5. Warpings and in-plane deformations associated to each of the internal forces in symmetric and antisymmetric laminated cross-

sections.

Fig. 6. Free edge effect in an extension test. Distribution of the interlaminar stress rzz along the interface 0� h.
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Fig. 7. Distributions of the shear stresses rxz within the thickness (y ¼ 0) of symmetric and antisymmetric laminated cross-sections

subjected to a shear force Tz.

Fig. 8. Distributions of the shear stresses ryz within the thickness (y ¼ 0) of symmetric and antisymmetric cross-sections subjected to a

shear force Tz.
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concentrations of the rzz stresses at the 0� h interface and near the free edge, for beams subjected to a

traction Tx; the results are nearly identical for symmetric and antisymmetric cross-sections. It appears that

near the free edge the normal stresses rzz are of traction only when h is greater than a value of about 65�.
Finally, Figs. 7 and 8 present the variations within the cross-section thickness of the shear stresses rxz and

ryz due to a shear force Tz.
6. Conclusion

The results presented in this paper on structural behavior and three-dimensional displacements and

stresses for a representative set of sections, may be added to the first illustrations made by Sanchez (2001)

and El Fatmi and Zenzri (2002) to show again the efficiency and accuracy of the exact beam theory in the

study of arbitrary elastic multi-material cross-sections. The proposed numerical method uses three-

dimensional available finite elements and classical elasticity formulation, which make it easy to implement
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in standard elasticity softs. It constitutes an adequate tool for the study of the structural behavior of any

cross-section and it provides three-dimensional Saint–Venant solutions which will allow the computations

of local effects. This tool will also be useful for the analysis of experimental composite tests which are more

structure tests rather than material tests.

Appendix A

This appendix is devoted to the relations, discussed in Section 4, that have to be imposed between the

degrees of freedom of each finite element. These relations are here written for the reference finite elements of
Fig. 9. In the following, [ui; vi;wi] denote the displacement components of the node i. The notations:
Fig.
u ¼ ½u1; u2; . . . ; uN �; v ¼ ½v1; v2; . . . ; vN �; w ¼ ½w1;w2; . . . ;wN �; g ¼ ½g1; g2; . . . ; gN �; N ¼ 15; 20;
are also used.

The 23 linear relations for the 15-node triangular prism element are as follows:
fiðuÞ ¼ 0; i 2 f2; 5� 9g;
fiðvÞ ¼ 0; i 2 f1; 3; 5� 9g;
fiðwÞ ¼ 0; i 2 f1; 4; 5� 9g;
f4ðvÞ þ f3ðwÞ ¼ 0;

f3ðuÞ þ 2f2ðvÞ ¼ 0;

f4ðuÞ þ 2f2ðwÞ ¼ 0;
where
f1ðgÞ ¼ �g1 þ g10;

f2ðgÞ ¼ g10 þ g1 � 2g7;

f3ðgÞ ¼ g3 � 3g10 � g12 � 4g2 þ 3g1 þ 4g11;

f4ðgÞ ¼ g5 � 3g10 � 4g6 þ 3g1 � g14 þ 4g15;

f5ðgÞ ¼ �4g4 þ 4g6 þ 4g2 þ 4g13 þ 4g10 � 4g15 � 4g11 � 4g1;

f6ðgÞ ¼ g3 � g1 � g10 þ g12 þ 2g7 � 2g8;

f7ðgÞ ¼ g5 � g1 � 2g9 � g10 þ 2g7 þ g14;

f8ðgÞ ¼ �2g3 � 2g1 þ 4g2 þ 2g12 þ 2g10 � 4g11;

f9ðgÞ ¼ �2g5 � 2g1 þ 4g6 � 4g15 þ 2g10 þ 2g14:
9. The 15-node triangular prism element and the 20-node rectangular prism element in the reference system of coordinates.
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The 32 linear relations for the 20-node rectangular prism element are as follows:
giðuÞ ¼ 0; i 2 f2; 5� 12g;
giðvÞ ¼ 0; i 2 f1; 3; 5� 12g;
giðwÞ ¼ 0; i 2 f1; 4; 5� 12g;
g4ðvÞ þ g3ðwÞ ¼ 0;

g3ðuÞ þ 2g2ðvÞ ¼ 0;

g4ðuÞ þ 2g2ðwÞ ¼ 0;
where
g1ðgÞ ¼ �2g2 þ 2g18 � g17 � 2g6 þ g7 þ 2g20 � 2g4 þ g5 þ 2g14 þ g3 � g15
þ g1 þ 2g16 � g13 � 2g8 � g19;

g2ðgÞ ¼ g7 þ g1 þ g13 � 2g10 � 2g12 þ g3 þ g17 þ g5 � 2g9 � 2g11 þ g19 þ g15;

g3ðgÞ ¼ �2g20 � 2g4 þ 2g16 þ 2g8;

g4ðgÞ ¼ 2g2 þ 2g18 � 2g14 � 2g6;

g5ðgÞ ¼ g17 þ g13 � g1 þ g3 þ g7 � g5 � g15 � g19;

g6ðgÞ ¼ g5 � g19 � 2g11 þ g15 � g7 � g1 � g13 � 2g10 þ 2g12 þ g3 þ g17 þ 2g9;

g7ðgÞ ¼ g19 � g15 þ g7 � g1 � g13 þ 2g10 � 2g12 � g3 þ g17 þ g5 þ 2g9 � 2g11;

g8ðgÞ ¼ �g3 þ 2g6 þ 2g2 þ g19 � g7 þ g15 � 2g14 � g5 þ g13 � g1 þ g17 � 2g18;

g9ðgÞ ¼ �2g20 þ g17 � g5 � g3 þ 2g4 � g1 � g7 þ g13 þ g15 þ 2g8 � 2g16 þ g19;

g10ðgÞ ¼ g17 � 2g9 þ g5 � g19 � 2g11 � g15 � g7 þ g1 þ g13 þ 2g10 þ 2g12 � g3;

g11ðgÞ ¼ g17 � 2g18 þ g3 þ 2g6 � 2g2 þ g19 � g7 � g15 þ 2g14 � g5 � g13 þ g1;

g12ðgÞ ¼ 2g4 � g19 þ g17 þ 2g20 � g3 � 2g16 � g13 þ g1 þ g15 � 2g8 þ g7 � g5:
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